
Vulnerabilities
in the Core
Preliminary Report and Census II
of Open Source Software

The Linux Foundation & The Laboratory for Innovation Science at Harvard

Frank Nagle, Harvard Business School
Jessica Wilkerson, The Linux Foundation
James Dana, Laboratory for Innovation Science at Harvard
Jennifer L. Hoffman, Laboratory for Innovation Science at Harvard

www.linuxfoundation.org | www.coreinfrastructure.org | lish.harvard.edu

https://www.linuxfoundation.org/
http://www.coreinfrastructure.org
http://lish.harvard.edu

The Linux Foundation & The Laboratory for Innovation Science at Harvard2Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Contents

Chapter One: Introduction 5
Chapter Two: Context 8
Chapter Three: Core Infrastructure Initiative’s Goals 10
Chapter Four: Spurring Action 12

Data sharing 13
Coordination 14
Investment 14

Chapter Five: Methods 16
Data Selection 17
Defining Relevant Terminology 18
Methods Part 1: Parsing 18
Methods Part 2: Dependencies 19
Limits to Dependency Network 20
Methods Part 3: Combine 21
Considerations 21

Preliminary Results 23
Insights into Top Committers 24

Lessons Learned 26
The Need for a Standardized Naming Schema for Software Components 27
The Increasing Importance of Individual Developer Account Security 28
The Persistence of Legacy Software in the Open Source Space 29

Conclusion 31
Next Steps 32

The Linux Foundation & The Laboratory for Innovation Science at Harvard3Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Appendix A: Most-Used Packages 34
async 35
inherits 36
isarray 37
kind-of 38
lodash 39
minimist 40
natives 41
qs 42
readable-stream 43
string_decoder 44

Appendix B: Most-Used Non-JavaScript Packages 45
com.fasterxml.jackson.core:jackson-core 46
com.fasterxml.jackson.core:jackson-databind 47
com.google.guava:guava 48
commons-codec 49
commons-io 50
httpcomponents-client 51
httpcomponents-core 52
logback-core 53
org.apache.commons:commons-lang3 54
slf4j:slf4j 55

Endnotes 56

The Linux Foundation & The Laboratory for Innovation Science at Harvard4Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Acknowledgments

This report and the research behind it would not have
been possible without the leadership of the Core
Infrastructure Initiative’s co-directors (Karim Lakhani,
Jim Zemlin, and Frank Nagle) and Steering Committee,
comprised of Josh Corman, Steve Lipner, Audris Mockus,
Henning Piezunka, Sam Ransbotham, and David Wheeler.
Their deep knowledge and exacting attention to detail
have guided and honed this endeavor over the past 18
months. Gratitude and thanks to Michael Dolan and
Kate Stewart at the Linux Foundation for their ongoing
commitment to this undertaking.

We would also like to thank Brian Warner of the Linux
Foundation, who provided the metrics, and Sean
Goggins of the University of Missouri, who generated
the trend charts in the appendix of this report (also
available at https://chaoss.community). We are
deeply indebted to you all!

https://chaoss.community

CHAPTER ONE

Introduction

The Linux Foundation & The Laboratory for Innovation Science at Harvard6Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER ONE

Introduction

Free and Open Source Software (FOSS) has become a
critical part of the modern economy. It has been
estimated that FOSS constitutes 80-90% of any
given piece of modern software,1 and software is an
increasingly vital resource in nearly all industries. This
heavy reliance on FOSS is common in both the public
and private sectors,2 and among tech and non-tech
companies alike.3 Therefore, ensuring the health and
security of FOSS is critical to the future of nearly all
industries in the modern economy.

However, it is difficult to fully understand the health
and security of FOSS because 1) FOSS, by design, is
distributed in nature so there is no central authority
to ensure quality and maintenance, and 2) because
FOSS can be freely copied and modified, it is unclear
how much FOSS, and precisely what types of FOSS,
are most widely used. Therefore, to ensure the future
health and security of the FOSS ecosystem, it is critical
to understand what FOSS is being used, and how well it
is supported and maintained.

In 2014, the Linux Foundation founded the Core
Infrastructure Initiative (CII) where its members
provided funding and support for FOSS projects critical to
global information infrastructure. The CII aims to aggregate

support from technology organizations and direct the
support to underfunded—but critical—FOSS projects
to help ensure the health of the FOSS ecosystem.4

In 2015, CII conducted the Census Project (“Census I”)
to identify which software packages in the Debian
Linux distribution were the most critical to the kernel’s
operation and security.5 Although the Census I project
focused on examining the Linux kernel distribution
packages, it did not delve deeply into what software
was deployed in production applications.6

Therefore, in mid-2018, the Linux Foundation partnered
with the Laboratory for Innovation Science at Harvard
University (LISH) with the goal of conducting a second
census to identify and measure how widely open
source software is deployed within applications by
private and public organizations. This Census II allows
for a more complete picture of FOSS usage by analyzing
usage data provided by partner Software Composition
Analysis (SCA) companies.

In alignment with the ever-evolving nature of the FOSS
ecosystem, the CII views the preliminary findings of
this second census as a precursor of more exhaustive
studies to come in our ongoing efforts to better

The Linux Foundation & The Laboratory for Innovation Science at Harvard7Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

understand these critical pillars in our information
infrastructure. Operating under data constraints, the
preliminary findings of this report cannot—and do
not purport to—be a definitive claim of which FOSS
packages are the most critical, but instead represent
a starting point upon which future versions will build.
The CII plans to release updates and expound upon
these insights into private usage of FOSS as more data
becomes available.

CHAPTER TWO

Context

The Linux Foundation & The Laboratory for Innovation Science at Harvard9Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER TWO

Context

The increasing importance of FOSS throughout the
economy became critically apparent in 2014 when the
Heartbleed security bug in the OpenSSL cryptography
library was discovered. By some estimates, the bug,
which was introduced into the OpenSSL codebase
nearly three years earlier, impacted nearly 20% of
secure web servers on the Internet (almost half a million
servers).7 The vulnerability allowed attackers to
obtain access to user passwords and session cookies,
essentially rendering ineffective the very security that
OpenSSL was built to ensure. Amongst other outcomes,
the Heartbleed vulnerability allowed the theft of 4.5
million medical records from a large hospital chain.8
Operating under the maxim that “with many eyeballs,
all bugs are shallow,”9 many FOSS projects have been
able to obtain greater levels of security. Unfortunately,
vulnerabilities in other widely-used projects with smaller
contributor bases, like OpenSSL, can slip by unnoticed.

Due to Heartbleed and other security issues in FOSS,
governmental bodies around the globe have begun to
take an expanded interest in the role of FOSS as a
type of critical infrastructure that underpins the
modern economy. For example, in 2014, the European
Commission put into place a FOSS Strategy10 and a
few years later it started sponsoring FOSS auditing by

setting up bug bounty programs, hackathons,
and conferences.11

Compounding the problem is the fact that FOSS is
often built into other software and hardware, but
precisely what FOSS is being used is not always made
clear. This has led to various US government agencies
pushing for deeper insights into the software building
blocks used to make various packages and devices via
a software bill of materials (SBOM), with one working
group dedicated to examining the use of FOSS in
medical devices.12 As an outgrowth of these efforts,
in April 2018, the leaders of the US Congress House
of Representatives Energy and Commerce Committee
sent a letter to the Linux Foundation, acknowledging
the critical importance of FOSS and exploring the
opportunities and challenges related to FOSS, with a
particular focus on how sustainable and stable the
FOSS ecosystem is.13

CHAPTER THREE

Core
Infrastructure
Initiative’s Goals

The Linux Foundation & The Laboratory for Innovation Science at Harvard11Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER THREE

Core Infrastructure Initiative’s Goals

Similar to physical infrastructure, the critical
components of the Internet and modern computing
may not always be the most remarkable or the most
visible. For example, when the Allies selected strategic
bombing targets in an effort to halt the German war
machine during World War II, one set stood out from
the others: ball bearing factories. The seemingly
commonplace products of these factories were crucial
components for nearly every aspect of wartime
manufacturing, and impacting their production would
have significant downstream impacts on the German
ability to fight.14 Similarly, there may be integral FOSS
projects whose simplicity or size may belie their vital
importance to the modern economy. As such, the
overarching goal is to reinforce this infrastructure and
guard against systemic vulnerabilities.

Analyzing the usage data from partner Software
Composition Analysis (SCA) and application security
companies, the Census II project aims to determine
how widely FOSS is deployed within applications by
private and public organizations. The specific goals of
the Census II project are as follows:

1. Identify the most commonly used free and
open source software components in production
applications.

2. Examine for potential vulnerabilities in these
projects due to:

• Widespread use of outdated versions;
• Understaffed projects; and,
• Known security vulnerabilities, among others.

3. Use this information to prioritize investments/
resources to support the security and health of FOSS.

CHAPTER FOUR

Spurring Action

The Linux Foundation & The Laboratory for Innovation Science at Harvard13Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER FOUR

Spurring Action

The motivation behind publishing these preliminary
findings—as well as anticipated updates in the future—
is to not only inform, but also to inspire action by
developers and by end-users to support the FOSS
ecosystem. While there are many ways to actively
support the critical software infrastructure that
underpins the world’s complex information systems,
we offer a few recommendations for unifying action.

Data sharing
In order to tackle a problem, one must first know what
may be affected and how. As mentioned above, there is
far too little data on actual FOSS usage. Although public
data on package downloads, code changes, and known
security vulnerabilities abound, the view on where and
how FOSS packages are being used remains opaque.
Private usage data contributed by partner SCAs and
other companies to the CII Census provides a clearer
view of which FOSS projects developers built into
proprietary software. Additionally, this data enables
researchers to trace the dependencies and determine
some of the most fundamental—though, perhaps, not
the best funded—projects upon which many packages
still rely. The insights we can glean from our census

efforts will only reach as far as the data sets that FOSS
stakeholders (private companies and organizations)
share with us. The most critical need for our efforts to
support the health and security of the FOSS ecosystem
is shared usage data from companies that partner
with CII. Any organization that wishes to contribute
data to the Census project can visit https://www.
coreinfrastructure.org/programs/census-project-ii/.

However, usage data only tells one side of the story.
The digital infrastructure of FOSS—upon which
so much of the economy rests—was built piece by
piece, line by line by diligent community contributors.
Capturing the contexts in which these developers
contribute and the motivations that drive them will
help shape more effective interventions and outcomes.
In that vein, CII is launching the “FOSS Contributor
Survey” in March 2020. This survey aims to poll FOSS
contributors annually to further research on the
incentives, motivators, and trends driving open source
development over time. Any FOSS contributor that
wishes to participate in the survey can visit https://
www.coreinfrastructure.org/programs/census-
project-ii/.

https://www.coreinfrastructure.org/programs/census-project-ii/
https://www.coreinfrastructure.org/programs/census-project-ii/
https://www.coreinfrastructure.org/programs/census-project-ii/
https://www.coreinfrastructure.org/programs/census-project-ii/
https://www.coreinfrastructure.org/programs/census-project-ii/

The Linux Foundation & The Laboratory for Innovation Science at Harvard14Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Coordination
Beyond predication upon a solid foundation of data,
calls to action must coordinate efforts across the whole
the FOSS ecosystem. Standardizing terminology and
sharing best practices enable the community to build
upon previous successes and accelerate progress.
Perhaps the largest stumbling block to coordination in
the open source sphere is the myriad identifiers used
to reference software. FOSS packages live on many
different repositories, like NuGet, Maven, GitHub, and
npm to name a few. Project names alone may not
differentiate between resulting forks of an original
project or direct people to the canonical repository.
Listing which repository holds the original version of
that project (for example, left-pad/npm) can reduce
some of the potential confusion. However, identifying a
project by the URLs of the repository (location of source
code) and the project website (with updated community
information and documentation) may be the best solution
to ensure clarity. Linking these two URLs as projects will
distinguish components more efficiently, even if some
FOSS projects move or do not have a public repository.

Accurate project identification impacts not only academia,
but the private sector as well. As cyberattacks and
security breaches increase, all companies—not just Big
Tech—will need to become more cognizant of which
components comprise their websites and applications,
as well as the origins of those components. In the United
States, the federal government is currently creating a
Software Bill of Materials which will require all industries
to delineate the composition of their software systems.
Proactively adopting current standard formats, like

Linux’s Software Package Data Exchange (SPDX), will
put forward-thinking business leaders at an advantage
once regulations come into effect.

Investment
Like any critical infrastructure, we must invest in open
source if it is to continue to support the demands made
upon it. Nadia Eghbal, author of Roads and Bridges: The
Unseen Labor Behind our Digital Infrastructure, outlined
the many sources of financial support available to the
FOSS community on her GitHub page “Lemonade
Stand.”15 Funding for projects comes in many different
forms, including donations, grants, and crowdfunding.
Other programs, like Linux Foundation’s Community
Bridge16 or GitHub’s Bug Bounty Program17, match open
source projects and developers with funding from private
companies that rely upon them. While these programs
represent a step in the right direction, questions
still remain. Without a fuller understanding of what
the most critical FOSS projects might be, how do
supporters know that sufficient funds will go to where
the need is greatest? Are those who benefit most from
FOSS projects doing their “fair share” to support the
communities behind them?

While money has long been a contentious topic in
the FOSS community, investment encompasses more
than just financial support. In the open source world,
time and talent may indeed be the most important
investments. As popularity of particular packages wax
and wane, so too do the active contributors. Larger
and more established packages tend to attract more

The Linux Foundation & The Laboratory for Innovation Science at Harvard15Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

contributors18 than smaller, less visible ones—even if
the latter are more heavily depended upon in practice.
Companies reliant upon FOSS packages could benefit
from supporting them, directly (paying employees
to maintain those projects on the clock) or indirectly
(hiring contributors to those projects as employees).
Similar to financial resources, time and talent need to
be carefully considered to ensure that they are directed
toward the most critical projects.

CHAPTER FIVE

Methods

The Linux Foundation & The Laboratory for Innovation Science at Harvard17Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER FIVE

Methods

The Census II effort benefited from the contribution of
private usage data by Software Composition Analysis
(SCAs) and application security companies, including
developer-first security company Snyk19 and Synopsys
Cybersecurity Research Center (CyRC)20, who partnered
with CII to advance the state of open source research.
These SCA partners provided data from automated
scans of production systems within their customers’
environments, as well as more thorough labor-intensive
human audits of software codebases conducted
throughout 2018.

In keeping with the spirit of the open source
community, CII sought to make the preliminary
methodology of this second census effort as
transparent as possible. However, in order to ensure
the privacy of our data partners and to protect any
proprietary aspects of their SCA services, some specific
details have been obscured.21 Ultimately, CII strives to
release all future results publicly and transparently,
but the commitment to safeguard the sensitive aspects
of the data provided must take precedent in this
preliminary report.

Data Selection
To better understand the prevalence and overall impact
of FOSS in the economy, we chose data that would best
reflect actual adoption and usage in businesses. While
stars, ratings, and download statistics indicate a package’s
popularity or reputation, these do not necessarily translate
into real-world, day-to-day use. Private usage data from
SCA companies’ automated scans and human audits from
2018 provides more insight into the inputs to each
software package. Instead of the higher-level packages
with which end-users would have more contact and
familiarity (like Mozilla Firefox or the Apache web server),
SCA data focuses on lower level components that act
as the building blocks for other software products.
This “lower level” focus is important for research,
because developers—not end-users—tend to drive the
widespread adoption and integration of FOSS projects.
As Mike Volpi of TechCrunch noted,

“... the real customers of open source
are the developers who often discover
the software, and then download and
integrate it into the prototype versions
of the projects that they are working on.

The Linux Foundation & The Laboratory for Innovation Science at Harvard18Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Once “infected” by open-source software,
these projects work their way through
the development cycles of organizations
from design, to prototyping, to
development, to integration and testing,
to staging, and finally to production. By
the time the open-source software gets to
production it is rarely, if ever, displaced.”22

Peering under the hood, so to speak, of the higher
level packages helps to narrow in on the specific
components that are most critical. While this data
approach does not provide significant insight into end-
user facing products (like OpenSSH, for example), it
does examine components within those products (like
OpenSSH’s now infamous lower level library, OpenSSL).

Defining Relevant Terminology
Before delving into the methodology, there is a need to
establish consistent terminology when discussing FOSS
data. To start, this report relied upon the following
definitions laid out in previous CII Census efforts:23

• package: a unit of software that can be installed
and managed by a package manager.

• package manager: software that automates the
process of installing and otherwise managing packages.

• repository: a location for storing and managing the
history of information (such as software).

The various methods employed to scan and audit
codebases that generated the private usage data, led to

analysis which occurred below the “package” level.
Sometimes a given software project depended on
a distinct part of a package, even though it did not
appear to depend on the other parts of that package.
As a result, CII defined a separate term:

• component: a unit of software that can be called
by or serves as an input into another piece of software.

The datasets used for this census contained FOSS
information at a variety of levels, often treating a
package and its subcomponents as separate entities. In
order to compare across all datasets, we standardized
this component-level data first.

Methods Part 1: Parsing
In collaboration with the Linux Foundation, the research
team iteratively refined the methodology for combining
the private usage data from the SCAs—complex datasets
with substantially different means, variance, and
schema for identifying unique components. Parsing
each dataset generally occurred in three stages.

• Stage 1: Cleaning the dataset to remove
organizational-specific substrings, whitespace, or
other extraneous characters.

• Stage 2: Extraction of identifying information from
each component in the dataset.

• Stage 3: Mapping each component to a project on
Libraries.io24 using that identifying information, if possible.

The Linux Foundation & The Laboratory for Innovation Science at Harvard19Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Not all FOSS packages have a unique identifier.
Therefore, to aggregate usage data within and across
different datasets, we had to map each component
in each dataset to a unique identifier. Here a unique
identifier is defined as the combination of the package
name (e.g., “lodash”) and the package manager which
hosts that package (e.g., “npm”).

The process of mapping dataset components to a
Libraries.io Project relied on several functions in
tandem, based on the identifying information found in
the dataset.

1. Searching components for embedded unique
identifiers (GitHub repository, name and package
manager) that can map to Libraries.io projects.

2. Analyzing component text for a naming system that
can be translated to the naming system on Libraries.
io or the package managers from which it pulls data.

3. Searching components for specified text strings that
directly map to a Libraries.io project.

4. Manual matching to a Libraries.io project if all other
methods cannot effectively map the component.

While the majority of components provided by SCA
datasets automatically matched to Libraries.io in
this manner, many components had to be manually
mapped. Furthermore, some components in the
private datasets did not exist on Libraries.io. These
components were still treated as real packages, but
could not be used to calculate indirect dependencies.

Methods Part 2: Dependencies
Indirect dependencies are a useful tool for understanding
which packages are the most essential to their software
ecosystem. If Package A is considered important, then
everything that Package A directly uses to function is
also important, and all of the packages those packages
depend on are important, and so on. Therefore, including
indirect values in our resulting dataset was a way to
find the “hidden keystones” in the FOSS ecosystem that
might be overlooked by a direct audit or scan.

In cases where data partners provided these indirect
metrics, we added those calculations to the direct
metrics to account for both types. In cases where
that data was not provided, we estimated the indirect
usage through Libraries.io, which collects dependency
information through the package managers from which
it pulls data.

Using the SCA datasets provided, we identified indirect
usage using the following process:

1. Using the dependency data provided by Libraries.io,
filter out non-runtime dependencies, filter out
optional dependencies, and filter out self-dependencies.

2. For each component, determine the list of packages
that component relies on, directly or indirectly. Each
member of the list, including the original component,
receives a score equal to the number of times that
component was observed being used in the SCA
datasets. For example, if “jquery” had a score of
10, each package “jquery” depends on (as well as
“jquery” itself) would have 10 added to their score.

The Linux Foundation & The Laboratory for Innovation Science at Harvard20Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

3. Extract the top-scoring packages from the network.
Notably, if a package is stored under multiple names
in its package manager, Libraries.io will give each
instance a unique identifier. For example, if a project
like ‘JSONStream’ has a deprecated version of that
package like ‘‘jsonstream’ stored separately in npm,
Libraries.io will assign each a unique identifier. For
those packages with multiple identifiers in Libraries.
io, the average of the scores across all of these
identifiers was taken as the final score for that
particular FOSS package.

There were a number of challenges associated with this
process that are still under consideration and will be
dealt with in future versions of this report.

First, as the dependency network was taken from
a Libraries.io dataset, only projects appearing on
Libraries.io can be indirectly evaluated this way. As
such, packages not on a Libraries.io connected package
manager did not show up in the top package list.

Second, since dependencies for a given package varied
across versions, the preliminary results overcounted
the true number of “necessary packages” per
component; as a result, packages with a more diverse
pool of dependencies over multiple versions had a
greater influence over the whole network than others
with fewer versions. Without complete versioning data,
however, this issue was difficult to avoid. More detailed
data will help to address this issue in the future.

Limits to Dependency
Network
When using dependency networks like the ones provided
by Libraries.io, researchers must select which types of
dependencies are considered relevant to the calculation.
Not all dependencies are created equal; some inputs to
a software component are more essential than others.
If researchers have access to this kind of granular
information, they can weight dependencies using that
information, which would likely create a drastically
different result. The section below highlights the
reasoning behind the exclusion of certain types of
dependencies in the preliminary results.

One of the first choices made was to exclude dependencies
which were flagged as being “optional” dependencies. If
Component B is not always an input for Component A,
then we cannot assume that one instance of A indicates
one instance of Component B as well. Therefore, we
ignored these “optional” dependency links.

Another decision was to set aside version specifications
provided by the Libraries.io dependency dataset.
Information on dependencies appears in the format
“Project A, Version B depends on Project C”, and then
a string that describes the valid versions for Project
C (“>=1.3.4, <1.2.1”). Integration of version-specific
dependencies would require a standardized format like
“Project A, Version B depends on Project C, Version D”.
Because we set aside version specifications, “Project A”
links to every package upon which “Project A” has ever
depended. “Project A” might have depended on a legacy

The Linux Foundation & The Laboratory for Innovation Science at Harvard21Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

package in older versions, but not in recent versions.
Therefore, by ignoring versioning, the probability of
overcounting the number of dependencies per project
increases and may skew the results.

In future census efforts, CII intends to include version-
sensitive dependencies to make these calculations
more reflective of the true FOSS ecosystem. Before
that information can be included, though, contributed
datasets would need to include full or nearly-full
versioning information and the dependency data
provided by Libraries.io would need to be reconfigured
into a version-to-version format.

The third choice made was to exclude non-runtime
dependencies. Build software components tend to be
massively interdependent, resulting in dependency
loops where an extensive chain of FOSS components
were all linked together in a circle. If these “build loops”
could be eliminated, then future census reports might
have better insight into build projects and ensure they
receive accurate acknowledgement in the results.

Methods Part 3: Combine
Once the indirect usage was added into each SCA
dataset provided, the top ten packages were identified
using the following process:

1. Drop the long tail of each dataset.

2. Calculate the average Z-score25 of the remaining
packages relative to the datasets in which that

package appears. This approach allows us to
proportionally compare the importance of that
package across multiple differently-sized data sets.

3. Calculate the rank for each package based on their
respective Z-scores.

4. Map each package to its equivalent GitHub
repository, if applicable.

Considerations
The final integrated data for this census is unique in that
it represents a snapshot of usage by private companies
integrated with dependency data. However, like any sample
dataset, it has limitations on how fully it can represent
the ground truth of all the FOSS projects in use. Analysis
of the aggregated data uncovered several considerations
to keep in mind when reviewing these preliminary results.

The first consideration to take into account is the fact
that FOSS projects exist in many different ecosystems,
written in many different languages. The data sources
provided snapshots of how companies use FOSS projects,
but did not indicate that one FOSS ecosystem or language
is any more important than another. The data received
from partner SCAs contained a large amount of software
from the JavaScript ecosystem. Additionally, small
packages are extremely common in the JavaScript
npm package system. For example, in npm, 47% of the
packages have 0 or 1 functions, and the average npm
package has 112 physical lines of code.26 In contrast,
the average Python module in the PyPI repository

The Linux Foundation & The Laboratory for Innovation Science at Harvard22Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

has 2,232 physical lines of code.27 These two factors
caused the dependency calculations to crowd out
non-JavaScript packages. To try to re-capture these
crowded-out packages, we created a separate set of
results to identify the top packages when JavaScript
packages are excluded.

Secondly, FOSS projects exist across time in a
multitude of forms. Several instances of deprecated
projects or projects which have not been updated for
a few years appeared in the usage data provided by
SCAs. Codebases often contain “legacy software” like
these, but deeper investigation would be needed to
differentiate whether these components were still
actively called upon or were cached as “gold masters”
for use in characterization testing.28 As a result, a
census reliant upon scan and audit data will inherently
reflect more older projects, or versions, over newer
ones. However, until the role of these legacy packages
can be determined, they may warrant more proactive
approaches, including efforts to help revitalize these
projects or provide assistance for end-users who would
like to transition over to newer projects.

A final consideration is the fact that FOSS projects
are used by different groups for different purposes.
Utilizing FOSS usage information, Census II avoided a
previous roadblock: determining which projects are
“real” and “relevant”. However, the sample size was
limited to the particular customer bases of the respective
Software Composition Analysis (SCA) firms who provided
data. Furthermore, privacy concerns prevented the
provision of data with the level of specificity necessary
to undertake representative sampling.

Longstanding roadblocks identified prior to the
launch of Census II continue to present challenges.
The question of how to incorporate versioning
into dependency networks, for example, remains
unresolved.

The reliance upon identifying information provided by
Libraries.io or GitHub inherently excludes packages
that do not appear on either platform, pushing
them out of the top ranks during the dependency
calculations run for this report. It is unclear whether the
inclusion of other datasets from sources like Debian,
Wordpress, and Drupal would alleviate or exacerbate
these problems.

Under these constraints the preliminary findings of this
report cannot—and do not purport to—be a definitive
claim of which FOSS packages are the most critical.

The calculations provide greater insight into which
packages are the most important for the companies
and organizations served by CII’s data partners. FOSS
software that is essential in one sector may not be
used in another. These preliminary results undoubtedly
reflect distributions specific to each customer base, but
they also provide a rare glimpse into data on private
usage of FOSS unavailable to most researchers. CII
encourages more companies and organizations to join
the Census II effort as data partners, but until more
private usage data becomes available, the study must
work within this limited set.

CHAPTER SIX

Preliminary
Results

The Linux Foundation & The Laboratory for Innovation Science at Harvard24Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER SIX

Preliminary Results

The preliminary results of the CII Census II are meant
to serve as a “proof of concept” of our current methods.
We are committed to providing a clear picture of the
end-product that these methods create, especially as
the project continues. However, we also want to refrain
from making any definitive claims about the packages
listed; these lists will undoubtedly shift over time, as
we integrate more extensive datasets and refine our
dependency analysis algorithm.

The preliminary results take the form of two lists. The
first list identifies the ten most used packages from
our dependency analysis, listed in alphabetical order
in Appendix A (see page 34). The second list contains
the ten most used non-JavaScript packages, also
presented in alphabetical order in Appendix B (see
page 45). Given that JavaScript is heavily represented
in our data sources and encourages the proliferation
of packages, JavaScript packages will dominate any
ranking we create. To account for this, the most used
non-JavaScript packages list aims to give a sense of
what other kinds of packages are keystones of the
FOSS ecosystem. Notably, this second list experiences a
similar problem, as Java packages dominate all others.

To give greater context to these packages and how they
operate, CII partnered with the CHAOSS29 project, a
Linux Foundation initiative focused on creating metrics
and analysis tools to evaluate the health of FOSS
communities. The name of each project links to a page
containing more detailed CHAOSS metrics, including
graphs of commits per week and lines of code added
per week. The project description of the project, as it
appears on the associated GitHub repository, appears
directly after the project name. The size of each project
is listed as Total Lines of Code, which were measured in
January 2020.30 Specific data from 2018, such as the
number of active contributors31 and commits, have been
included in the accompanying tables to provide a timeframe
and context for each project comparable to the private
SCA-collected data. In an effort to reveal longer term
trends, we have also included graphs to display longitudinal
data about project activity. Please note that these graphs
show data beyond the 2018 timeframe.

Insights into Top Committers
After identifying the ten most used packages and
ten most used non-JavaScript packages from our
dependency analysis, more insights emerged from

The Linux Foundation & The Laboratory for Innovation Science at Harvard25Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

public project data about the communities behind
them. By running a query on GitHub data over the
life of each of these repositories, we were able to
determine the top three committers for each of these
FOSS projects. To get a fuller view of total contributions,
the query examined not only users who pushed the
commits, but also users who authored commits and
actually committed. By manually cross-referencing
public GitHub profile information with data sources like
LinkedIn, Crunchbase, and other publicly-available data
from social media and networks, company affiliations
for the majority—over 75%—of the top committers
could be determined. Some of those contributors may
have had multiple affiliations with different companies
over the length of the respective FOSS projects.
Additionally, some contributors may have had periods
of self-employment (approximately 15% of the top
committers, labeled as “Independent”). For the
remaining 10% of the top committers, there were no
known or no found affiliations.

These statistics illustrate an interesting pattern: a high
correlation between being employed and being a top
contributor to one of the FOSS packages identified
as most used. Contrary to popular image in open
source discussions of “the overworked and underpaid
programmer,” an analysis of 2017 GitHub data found
that some of the most active FOSS developers
contributed to projects under their Microsoft, Google,
IBM, or Intel employee email addresses.32 Even if the
contributors to the projects listed in the appendices
do not receive direct compensation from private
companies to develop these packages, their status as a
member of the FOSS community could have endorsed

their qualifications for their current paid employment.
However, no conclusions can be drawn without greater
visibility into the unique circumstances under which
contributors operate and direct data to support those
hypotheses. To address this gap, in the coming months,
CII will pilot a survey of thousands of contributors
associated with the FOSS packages identified by this
preliminary census report. The survey will explore
the contributor’s level of engagement, employment
history, and employer’s policies on developing FOSS in
the workplace. A more thorough understanding of the
forces at work will help FOSS stakeholders—individual
contributors, open source foundations, and companies
alike—better allocate resources and support in the future.

CHAPTER SEVEN

Lessons
Learned

The Linux Foundation & The Laboratory for Innovation Science at Harvard27Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER SEVEN

Lessons Learned

As a separate result of the Census II effort, the CII team
identified several “lessons learned” throughout the initial
stages of the project. While these lessons learned do not
impact the substance of the findings—nor lists of most
used packages—we believe these results are important
to the broader conversation and merit exploration.

The Need for a Standardized
Naming Schema for Software
Components
Members of the Census II team and the Steering
Committee spent months in the time leading up to the
project’s acquisition of data attempting to anticipate
and prepare for expected obstacles and challenges
to the data’s use and analysis. The challenges created
by the lack of a standardized naming schema for
software components that had vexed the Census I
effort persisted. The naming conventions for software
components across all the data contributed to the
Census II effort were unique, individualized, and
inconsistent. The effort required to untangle and
merge these datasets slowed progress on the current

project significantly. Despite the considerable effort
that went into creating the framework to produce these
initial results for Census II, the challenge of applying it
to other data sets with even more varied formats and
naming standards still remains.

The struggles with this lack of standardized software
component naming schema are not unique to the CII
Census projects. The National Institute for Standards
and Technology (NIST) has grappled with this issue
for decades in the context of software vulnerability
management. Stakeholders working with the National
Telecommunications and Information Administration
(NTIA) Software Component Transparency process have
wrestled with the same problem. For some—including
the Census II and NTIA software bill of materials (SBOM)
projects—the largest consequence of the lack of a
naming schema has been lost time. However, as SBOM
and other software supply chain transparency and
security efforts continue to grow, mature, and become
more complex, the lack of a standardized software
component naming schema threatens to stymie
efforts by industry and government to better protect
themselves from software-based incidents.

The Linux Foundation & The Laboratory for Innovation Science at Harvard28Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

The bottom line—revealed by the Census II project,
the NTIA process, NIST’s vulnerability management
struggles, and other similar projects—is that there is a
critical need for a standardized software component
naming schema. Until one exists, strategies for software
security, transparency, and more will have limited effect.
Organizations will remain categorically unable to
communicate with each other on the large-scale—
particularly, the global scale—necessary to share
such information. Given the increasing frequency and
sophistication of cybersecurity incidents in which the
software supply chain plays a part, there is precious
little time to waste.

The Increasing Importance of
Individual Developer Account
Security
The next challenge and lesson learned that arose after
the data had been analyzed was the criticality of the
security of individual developer accounts. Of the top
ten most-used software packages in our analysis, the
CII team found that seven were hosted under individual
developer accounts. The consequences of such heavy
reliance upon individual developer accounts must not
be discounted. For legal, bureaucratic, and security
reasons, individual developer accounts have fewer
protections associated with them than organizational
accounts in a majority of cases. While these individual
accounts can employ measures like multi-factor
authentication (MFA), they may not always do so and

individual computing environments may be more
vulnerable to attack. These accounts do not have the
same granularity of permissioning and other publishing
controls that organizational accounts do. This means
that changes to code under the control of these
individual developer accounts are significantly easier to
make, and to make without detection.

These potential risks are not hypothetical; developer
account takeovers have begun occurring with
increasing frequency. “Backdooring” is one popular
method used to infiltrate accounts: hackers insert
malicious code into seemingly innocuous packages
that create a “backdoor” for hackers to enter once the
host package is installed. Perhaps the most famous
example—though not a “strict” account takeover—
involved the backdooring of the popular event-stream
JavaScript library. There, a malicious actor gained
legitimate publishing rights to the event-stream
package, and then wrote a backdoor into the package
itself.33 Separately, in July 2019, a Ruby developer was
alerted to the fact that their account with the official
Ruby repository had been taken over, and several of
their packages backdoored. Later, in August 2019, a
similar account takeover was executed once again at
the Ruby repository, leading to the backdooring of
eleven packages.34

While developer account takeovers remain a significant
risk to software security, there are other problematic
issues that might be less obvious. One example are
developers who decide to remove or “delete” their
developer accounts. This happened in 2016 with a
package called “left-pad,” with consequences that

The Linux Foundation & The Laboratory for Innovation Science at Harvard29Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

stakeholders described as “breaking” the Internet for
several hours. There, a developer who was upset with
the outcome of a package naming dispute removed
their code from the npm repository in protest. It was
quickly discovered that hundreds of downstream
packages depended upon that seemingly minor piece
of code. Without that critical left-pad code, these
downstream packages broke.35 Similarly, in 2019, a
developer who disagreed with a business decision
undertaken by Chef Software removed their code from
the Chef repository with similar downstream impacts
to that of left-pad.36

Thus, in the contexts of both security and general risk
management, it is critical that developer accounts be
understood and protected to the greatest degree
possible. With this in mind, the Linux Foundation focuses
on developer account security in two of its major
projects: the Core Infrastructure Initiative badging
program37 and the more recently launched Trust
and Security Initiative. Both of these projects wrap
developer account security into their controls to mitigate
these risks as part of a holistic security program.

The Persistence of Legacy
Software in the Open Source
Space
The last lesson learned was more subtle than the
discovery of the criticality of developer account
security. In conversations with JavaScript ecosystem

experts about the rankings derived from the Census
II data pool, these experts were struck by the relative
position of software package “minimist” as compared to
software package “yargs”. The two packages performed
essentially the same functions, but yargs was generally
considered the newer (and better) replacement for
minimist. However, minimist showed up several
rankings higher than yargs in the Census II rankings.

This suggests that a generally accepted reality exists
within the FOSS development space: open source has
not escaped the problem of legacy technology. In this
specific case, the “legacy tech” is a single software
package whose replacement has not yet overtaken its
predecessor in terms of sheer usage. Software should
arguably be easier to replace within a live system,
as it does not involve replacing hardware. In cases
where the legacy-to-replacement packages perform
generally the same function, the new package could
be slotted in with relatively minor disruption to the
full product overall. However, in many cases this may
not be true: compatibility bugs abound. More likely
to be problematic, however, are the financial and
time-related costs associated with switching to new
software when there is no guarantee of added benefit.
For organizations who have not yet experienced a
problem with minimist instead of yargs for example,
these transition costs may sway an organization against
switching to the newer package.

That attitude neglects to take into consideration a
separate, related reality of technology in general and
FOSS in particular: as technology ages—both software
and hardware—it loses support. In the case of FOSS

The Linux Foundation & The Laboratory for Innovation Science at Harvard30Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

like minimist, the number of developers working to
ensure updates—including feature improvements,
as well as security and stability updates—decreases
over time. Often those developers instead choose to
dedicate their time and talents to newer packages.
As a consequence, those legacy software packages
become more likely to break with each passing day
without the guarantee of support on-hand to provide
fixes. Although this was not the path that led to the
Heartbleed situation discussed above, this path could
lead to similar large-scale negative outcomes. Thus, it
is equally critical that legacy tech issues be considered
in the FOSS space, just as they are in the general
technology context. Without this awareness, and
especially without processes and procedures in place to
address the risks created by legacy FOSS, organizations
open themselves up to the possibility of hard-to-detect
issues within their software bases.

CHAPTER EIGHT

Conclusion

The Linux Foundation & The Laboratory for Innovation Science at Harvard32Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

CHAPTER EIGHT

Conclusion

We understand that these findings are not comprehensive,
but with the usage data provided, we hoped to shed
a bit more light on what FOSS packages are used—or
heavily depended upon—within private companies.
Far from being the final word on critical FOSS projects,
this census effort represents the beginning of a larger
dialogue on how to identify crucial packages and
ensure they receive adequate resources and support.

Next Steps
This preliminary report from the Core Infrastructure
Initiative Census II effort represents the first steps toward
addressing the structural issues that threaten the FOSS
ecosystem. CII supports efforts to standardize unique
software identifiers (i.e., linking project URLs with repository
URLs, SHA checksums, etc.) across the public and private
sectors to facilitate better data sharing and aggregation
for research. Additionally, we advocate for the inclusion
of comprehensive version information in SCA data for
both packages observed in scans and audits as well as
dependency data. Better standardized and more
comprehensive data would enable research efforts, like
the Census II, to provide an even clearer picture of which
components of the FOSS ecosystem need critical support.

The initial findings of the census have provided
valuable insights, but CII also strives to outline the
positive impact of FOSS. As the network of usage data
contributors to CII grows, we aspire to provide a more
accurate estimate of the economic importance of FOSS.
To better understand the communities building and
maintaining this critical information infrastructure,
we plan to launch a longitudinal survey of FOSS
developers in March 2020. In addition to capturing
the demographic information of contributors in the
open source community, the survey will explore the
intersection of time spent on FOSS development and
employment. By asking deeper questions about time
allocation and employer policies toward open source,
this endeavor aims to clarify the often blurry lines
between direct and indirect support of FOSS projects
in the private sector, as well as the sustainability of
the FOSS ecosystem. Responses from the people most
closely involved in FOSS will inform and guide future
FOSS community-building efforts, including funding
initiatives, badging programs, and code development
norms. Going forward in these efforts, CII welcomes
new partnerships with organizations and individuals
willing to contribute more comprehensive data and
more precise methods to fortify the security and
sustainability of the free and open source software

The Linux Foundation & The Laboratory for Innovation Science at Harvard33Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

community. For more information about Core
Infrastructure Initiative’s research, or to express
interest in partnering with us, please visit our website
at https://www.coreinfrastructure.org/programs/
census-project-ii/.

https://www.coreinfrastructure.org/programs/census-project-ii/
https://www.coreinfrastructure.org/programs/census-project-ii/

APPENDIX A

Most-Used
Packages

Our dependency analysis identified the following ten
packages—listed in alphabetical order below—as the
most used FOSS packages among those reported in the
private usage data contributed by SCA partners. For
further information on how this list was compiled, refer
to the Methods section.

The Linux Foundation & The Laboratory for Innovation Science at Harvard35Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Code Changes (Commits)/Week Lines of Code Added/Week

async
A utility module which provides straight-forward, powerful functions for working with asynchronous JavaScript.
Although originally designed for use with Node.js and installable via npm install async, it can also be used directly
in the browser.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/caolan/async 196,700
Lines

Authors: 22
Commiters: 7

86 total
1.65/week

As of February 7, 2020, this project has 11 open issues on GitHub.

http://census.osshealth.io/repo/Census/async/overview
http://github.com/caolan/async

The Linux Foundation & The Laboratory for Innovation Science at Harvard36Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

inherits
Browser-friendly inheritance fully compatible with standard node.js inherits.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/isaacs/inherits 3,800 Lines
Authors: 3
Commiters: 1

Gap, no commits
between December 15,
2016 and June 19, 2019

As of February 7, 2020, this project has 3 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/inherits/overview
http://github.com/isaacs/inherits

The Linux Foundation & The Laboratory for Innovation Science at Harvard37Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

isarray
Array#isArray for older browsers and deprecated Node.js versions.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/juliangruber/
isarray 317 Lines

Authors: 3
Commiters: 3

8 total
0.15/week

As of February 7, 2020, this project has 4 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/isarray/overview
http://github.com/juliangruber/isarray
http://github.com/juliangruber/isarray

The Linux Foundation & The Laboratory for Innovation Science at Harvard38Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

kind-of
Get the native JavaScript type of a value.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/jonschlinkert/
kind-of 2,000 Lines

Authors: 11
Commiters: 11

Gap, no commits
between 2017-12-01
and 2019-05-25

As of February 7, 2020, this project has 3 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/kind-of/overview
http://github.com/jonschlinkert/kind-of
http://github.com/jonschlinkert/kind-of

The Linux Foundation & The Laboratory for Innovation Science at Harvard39Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

lodash
A modern JavaScript utility library delivering modularity, performance & extras.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/lodash/lodash 42,300 Lines
Authors: 28
Commiters: 2

58 total
1.12/week

As of February 7, 2020, this project has 30 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/lodash/overview
http://github.com/lodash/lodash

The Linux Foundation & The Laboratory for Innovation Science at Harvard40Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

minimist
Parse argument options. This module is the guts of optimist’s argument parser without all the fanciful decoration.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/substack/
minimist 1,200 Lines

Authors: 14
Commiters: 6

Last commit:
August 29, 2015

As of February 7, 2020, this project has 38 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/minimist/overview
http://github.com/substack/minimist
http://github.com/substack/minimist

The Linux Foundation & The Laboratory for Innovation Science at Harvard41Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

natives
Do stuff with Node.js’s native JavaScript modules.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/addaleax/
natives 3,000 Lines

Authors: 2
Commiters: 1

15 total
0.29/week
Last commit:
October 8, 2018

As of February 7, 2020, this project has 0 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/natives/overview
http://github.com/addaleax/natives
http://github.com/addaleax/natives

The Linux Foundation & The Laboratory for Innovation Science at Harvard42Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

qs
A querystring parsing and stringifying library with some added security.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/ljharb/qs 5,400 Lines
Authors: 5
Commiters: 2

36 total
0.69/week

As of February 7, 2020, this project has 41 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/qs/overview
http://github.com/ljharb/qs

The Linux Foundation & The Laboratory for Innovation Science at Harvard43Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

readable-stream
Node.js core streams for userland.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/nodejs/
readable-stream 28,100 Lines

Authors: 10
Commiters: 3

69 total
1.33/week

As of February 7, 2020, this project has 21 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/readable-stream/overview
http://github.com/nodejs/readable-stream
http://github.com/nodejs/readable-stream

The Linux Foundation & The Laboratory for Innovation Science at Harvard44Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

string_decoder
Node-core string_decoder for userland.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

npm github.com/nodejs/string_
decoder 4,200 Lines

Authors: 4
Commiters: 3

17 total
0.32/week

As of February 7, 2020, this project has 3 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/string_decoder/overview
http://github.com/nodejs/string_decoder
http://github.com/nodejs/string_decoder

APPENDIX B

Most-Used
Non-JavaScript
Packages

Our dependency analysis identified the following ten
packages—listed in alphabetical order below—as the
most used, non-JavaScript FOSS packages among those
reported in the private usage data contributed by SCA
partners. For the rationale behind creating a separate
set of results excluding JavaScript packages, refer to
“Considerations” (page 21).

The Linux Foundation & The Laboratory for Innovation Science at Harvard46Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

com.fasterxml.jackson.core:jackson-core
A core part of Jackson that defines Streaming API as well as basic shared abstractions.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/FasterXML/
jackson-core 74,400 Lines

Authors: 7
Commiters: 6

183 total
3.52/week

As of February 7, 2020, this project has 40 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/jackson-core/overview
http://github.com/FasterXML/jackson-core
http://github.com/FasterXML/jackson-core

The Linux Foundation & The Laboratory for Innovation Science at Harvard47Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

com.fasterxml.jackson.core:jackson-databind
General data-binding package for Jackson (2.x): works on streaming API (core) implementation(s).

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/FasterXML/
jackson-databind 74,400 Lines

Authors: 23
Commiters: 2

594 total
11.42/week

As of February 7, 2020, this project has 363 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/jackson-databind/overview
http://github.com/FasterXML/jackson-databind
http://github.com/FasterXML/jackson-databind

The Linux Foundation & The Laboratory for Innovation Science at Harvard48Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

com.google.guava:guava
Google core libraries for Java.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/google/guava.git 1 Million
Lines

Authors: 83
Commiters: 3

303 total
5.83/week

As of February 7, 2020, this project has 620 open issues on GitHub.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/guava/overview
http://github.com/google/guava.git

The Linux Foundation & The Laboratory for Innovation Science at Harvard49Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

commons-codec
Apache Commons Codec (TM) software provides implementations of common encoders and decoders such as
Base64, Hex, Phonetic and URLs.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/apache/
commons-codec 51,700 Lines

Authors: 3
Commiters: 3

36 total
0.69/week

As of February 7, 2020, this project has 29 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/commons-codec/overview
http://github.com/apache/commons-codec
http://github.com/apache/commons-codec

The Linux Foundation & The Laboratory for Innovation Science at Harvard50Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

commons-io
Commons IO is a library of utilities to assist with developing IO functionality.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/apache/
commons-io 73,700 Lines

Authors: 10
Commiters: 6

73 total
1.40/week

As of February 7, 2020, this project has 148 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/commons-io/overview
http://github.com/apache/commons-io
http://github.com/apache/commons-io

The Linux Foundation & The Laboratory for Innovation Science at Harvard51Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

httpcomponents-client
The Apache HttpComponents™ project is responsible for creating and maintaining a toolset of low level Java
components focused on HTTP and associated protocols.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/apache/
httpcomponents-client 121,700 Lines

Authors: 16
Commiters: 8

133 total
2.56/week

As of February 7, 2020, this project has 47 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/httpcomponents-client/overview
http://github.com/apache/httpcomponents-client
http://github.com/apache/httpcomponents-client

The Linux Foundation & The Laboratory for Innovation Science at Harvard52Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

httpcomponents-core
The Apache HttpComponents™ project is responsible for creating and maintaining a toolset of low level Java
components focused on HTTP and associated protocols.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/apache/
httpcomponents-core 130,900 Lines

Authors: 15
Commiters: 4

302 total
5.81/week

As of February 7, 2020, this project has 7 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/httpcomponents-core/overview
http://github.com/apache/httpcomponents-core
http://github.com/apache/httpcomponents-core

The Linux Foundation & The Laboratory for Innovation Science at Harvard53Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

logback-core
The reliable, generic, fast and flexible logging framework for Java.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/qos-ch/logback 154,600 Lines
Authors: 1
Commiters: 2

99 total
1.90/week

As of February 7, 2020, this project has 799 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/logback/overview
http://github.com/qos-ch/logback

The Linux Foundation & The Laboratory for Innovation Science at Harvard54Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

org.apache.commons:commons-lang3
A package of Java utility classes for the classes that are in java.lang’s hierarchy, or are considered to be so standard
as to justify existence in java.lang.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/apache/
commons-lang 168,300 Lines

Authors: 28
Commiters: 17

225 total
4.32/week

As of February 7, 2020, this project has 163 open issues on its JIRA site

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/commons-lang/overview
http://github.com/apache/commons-lang
http://github.com/apache/commons-lang

The Linux Foundation & The Laboratory for Innovation Science at Harvard55Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

slf4j:slf4j
Simple Logging Facade for Java.

Platform GitHub Total Lines
of Code

Active Contributors
2018

Commits
2018

maven github.com/qos-ch/slf4j 38,400 Lines
Authors: 4
Commiters: 4

31 total
0.60/week

As of February 7, 2020, this project has 189 open issues on its JIRA site.

Code Changes (Commits)/Week Lines of Code Added/Week

http://census.osshealth.io/repo/Census/slf4j/overview
http://github.com/qos-ch/slf4j

The Linux Foundation & The Laboratory for Innovation Science at Harvard56Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

Endnotes
1. https://www.sonatype.com/hubfs/SSC/Software_Supply_Chain_Inforgraphic.pdf?t=1468857601884

2. https://www.wired.com/2016/08/open-source-won-now/?GuidesLearnMore

3. https://www.linuxfoundation.org/uncategorized/2018/08/corporate-open-source-programs-are-on-the-rise-as-shared-
software-development-becomes-mainstream-for-businesses

4. https://www.coreinfrastructure.org

5. https://www.coreinfrastructure.org/programs/census-project

6. The project did use data on how popular a package was, but this was limited to installations tracked by the Debian Linux distribution and
did not cast a wider net due to limited scope.

7. https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html

8. https://time.com/3148773/report-devastating-heartbleed-flaw-was-used-in-hospital-hack/

9. Often referred to as Linus’s Law, named after the creator of Linux, the maxim was formalized by Eric Raymond in his book The Cathedral
and the Bazaar (1999).

10. https://ec.europa.eu/info/departments/informatics/open-source-software-strategy_en

11. https://ec.europa.eu/info/departments/informatics/eu-fossa-2_en

12. https://www.wired.com/story/urgent-11-ipnet-vulnerable-devices/

13. https://web.archive.org/web/20180422034612/https://energycommerce.house.gov/wp-content/uploads/2018/04/040218-Linux-
Evaluation-of-OSS-Ecosystem.pdf

14. https://www.businessinsider.com/black-thursday-for-wwii-us-army-air-force-over-schweinfurt-germany-2018-10

15. https://github.com/nayafia/lemonade-stand

16. https://communitybridge.org/

17. https://bounty.github.com/

18. https://www.sciencedirect.com/science/article/pii/S0963868712000340

19. https://snyk.io/

20. https://www.synopsys.com/software-integrity/cybersecurity-research-center.html

21. The addition of new SCA and industry partners with private usage data contributions would enable CII to compile enough data to release an
aggregated, de-identified dataset in the future.

https://www.wired.com/2016/08/open-source-won-now/?GuidesLearnMore
https://www.linuxfoundation.org/uncategorized/2018/08/corporate-open-source-programs-are-on-the-rise-as-shared-software-development-becomes-mainstream-for-businesses
https://www.linuxfoundation.org/uncategorized/2018/08/corporate-open-source-programs-are-on-the-rise-as-shared-software-development-becomes-mainstream-for-businesses
https://www.coreinfrastructure.org
https://www.coreinfrastructure.org/programs/census-project
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://time.com/3148773/report-devastating-heartbleed-flaw-was-used-in-hospital-hack/
https://ec.europa.eu/info/departments/informatics/open-source-software-strategy_en
https://ec.europa.eu/info/departments/informatics/eu-fossa-2_en
https://www.wired.com/story/urgent-11-ipnet-vulnerable-devices/
https://web.archive.org/web/20180422034612/https://energycommerce.house.gov/wp-content/uploads/2018/04/040218-Linux-Evaluation-of-OSS-Ecosystem.pdf
https://web.archive.org/web/20180422034612/https://energycommerce.house.gov/wp-content/uploads/2018/04/040218-Linux-Evaluation-of-OSS-Ecosystem.pdf
https://www.businessinsider.com/black-thursday-for-wwii-us-army-air-force-over-schweinfurt-germany-2018-10
https://github.com/nayafia/lemonade-stand
https://communitybridge.org/
https://bounty.github.com/
https://www.sciencedirect.com/science/article/pii/S0963868712000340
https://snyk.io/
https://www.synopsys.com/software-integrity/cybersecurity-research-center.html

The Linux Foundation & The Laboratory for Innovation Science at Harvard57Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software

22. https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/

23. https://idalink.org/d-8777

24. Libraries.io, a Tidelift Project licensed under CC-BY-SA 4.0, was used for two reasons: First, because it’s an aggregate of many different
package managers. Second, Libraries.io was used as the canonical dataset for the Census II Prototype.

25. The Z-score of a package is equal to the package’s value minus the mean of the values of the list it comes from, then divided by the
standard deviation of that list. This metric captures the relative importance of a package compared to other packages in its dataset. Each
dataset is a sample of the greater FOSS ecosystem – larger samples are not inherently “more important” than smaller samples.
Z-scores allow us to treat each distinct dataset as equally relevant to the overall result.

26. https://arxiv.org/pdf/1709.04638.pdf

27. https://tomforb.es/how-much-code-is-there-in-the-python-package-index/

28. https://blog.thecodewhisperer.com/permalink/surviving-legacy-code-with-golden-master-and-sampling

29. For more details on the CHAOSS Project and how to contribute, see https://chaoss.community/about/.

30. Values were determined using a Chrome extension “GitHub Gloc,” which pulls lines of code information from GitHub’s API. For more
information, see https://github.com/artem-solovev/gloc.

31. For projects where there were no commits in 2018, the total number of contributors across the life of the project are given, as well as the
dates of the most recent commit.

32. https://www.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-
sustainable

33. Widely used open source software contained bitcoin-stealing backdoor, Dan Goodin, ArsTechnica (November 26, 2018), https://arstechnica.
com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/.

34. The year-long rash of supply chain attacks against open source is getting worse, Dan Goodin, Ars Technica (August 21, 2019) https://arstechnica.
com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-against-open-source-is-getting-worse/.

35. Rage-quit: Coder unpublished 17 lines of JavaScript and “broke the Internet”, Sean Gallagher, ArsTechnica (March 24, 2016),
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-
internet/.

36. Catalin Cimpanu, Developer takes down Ruby library after he finds out ICE was using it, ArsTechnica (Sep. 20, 2019) https://www.zdnet.com/
article/developer-takes-down-ruby-library-after-he-finds-out-ice-was-using-it/.

37. https://github.com/coreinfrastructure/best-practices-badge.

https://techcrunch.com/ 2019/01/12/how-open-source-software-took-over-the-world/
https://idalink.org/d-8777
https://arxiv.org/pdf/1709.04638.pdf
https://tomforb.es/how-much-code-is-there-in-the-python-package-index/
https://blog.thecodewhisperer.com/permalink/surviving-legacy-code-with-golden-master-and-sampling
https://chaoss.community/about/
https://github.com/artem-solovev/gloc
https://www.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable
https://www.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-against-open-source-is-getting-worse/
https://arstechnica.com/information-technology/2019/08/the-year-long-rash-of-supply-chain-attacks-against-open-source-is-getting-worse/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://www.zdnet.com/article/developer-takes-down-ruby-library-after-he-finds-out-ice-was-using-it/
https://www.zdnet.com/article/developer-takes-down-ruby-library-after-he-finds-out-ice-was-using-it/
https://github.com/coreinfrastructure/best-practices-badge

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

The Laboratory for Innovation Science at Harvard (LISH)
is spurring the development of a science of innovation
through a systematic program of solving real-world
innovation challenges while simultaneously conducting
rigorous scientific research and analysis.

To learn more, please visit lish.harvard.edu

http://lish.harvard.edu

	Introduction
	Context
	Core Infrastructure Initiative’s Goals
	Spurring Action

	Data sharing
	Coordination
	Investment
	Methods

	
Data Selection
	Defining Relevant Terminology
	Methods Part 1: Parsing
	Methods Part 2: Dependencies
	Preliminary
Results
	Lessons Learned
	Conclusion
	Most-Used Packages

	async
	inherits
	isarray
	kind-of
	lodash
	minimist
	natives
	qs
	readable-stream
	string_decoder
	Most-Used Non-JavaScript Packages

	com.fasterxml.jackson.core:jackson-core
	com.fasterxml.jackson.core:jackson-databind
	com.google.guava:guava
	commons-codec
	commons-io
	httpcomponents-client
	httpcomponents-core
	logback-core
	org.apache.commons:commons-lang3
	slf4j:slf4j

