
00:00 - Saron Yitbarek

When the New York City subway first started running in

1904, it was a marvel of the modern age. But ... what

happens when today's commuter depends on

infrastructure that was designed more than a century

ago? Trains are packed and often late. Two billion

subway rides take place each year in New York, and

nobody's marveling anymore. We are tied to yesterday's

crumbling infrastructure, and we have to find smart, new

ways to make it work.

00:44 - Saron Yitbarek

It used to be that infrastructure projects were these big,

concrete things we could see—that subway, for example.

And because of that physical presence, it was also pretty

obvious when they broke down. Highways crack,



telephone poles fall over. We know when those things

need fixing. Big efforts are necessary to get our lives in

sync with aging infrastructure.

01:12 - Saron Yitbarek

But things aren't always so obvious. Today we also have

IT infrastructure, server farms humming in isolated

fields, fiber optic cables spanning oceans, and software

infrastructure, too. Like legacy operation system, or shell

scripts that nobody dares to replace. When all that IT

infrastructure gets old and creaky, we can't see it for

ourselves. And yet, the infrastructure that makes today's

development work possible is aging, just like an old

subway track. And that can mess with our modern lives.

Massive new challenges emerge as today's command

line heroes work to make sure we're not being boxed in

by the past.

02:02 - Saron Yitbarek



This is episode 5 of our season-long journey into the

world of programming languages. We're looking at 2

languages that have intimate ties to the infrastructure

they were first designed for. COBOL is a language native

to mainframe computing, and Go is native to the cloud.

They're both deeply influenced by their origins.

Understanding that might save tomorrow's developers

from ending up like a New Yorker crammed into Penn

Station.

02:33 - Saron Yitbarek

I'm Saron Yitbarek, and this is season 3 of Command

Line Heroes, an original podcast from Red Hat.

02:43 - Grace Hopper

So many things ahead that we have to do, but we need

tremendous amounts of information, correlated, easy to

access. We're only at the beginning.



02:53 - Saron Yitbarek

Admiral Grace Hopper pioneered high-level

programming languages in the 1940s and 50s. And she

was able to make that great leap forward because of the

infrastructure of her time, mainframe computers.

03:08 - Chris Short

Hi, my name's Chris Short.

03:10 - Saron Yitbarek

Chris is a principal product marketing manager at Red

Hat, and he's a bit of a history buff, too.

03:17 - Chris Short

Admiral Hopper in the 40s made FLOW-MATIC, and she's

widely considered the grandmother of COBOL, which



was revolutionary at the time. So being able to sit there

and say, "Hey, just put it on the mainframe," or, "Hey, just

store it on the mainframe."

03:31 - Saron Yitbarek

It was a major game changer. Suddenly, you've got this

machine-independent language, COBOL, that's native to

the mainframe environment. Possibilities started

opening up.

03:42 - Chris Short

COBOL with mainframes really gave every organization

the capability to say instead of having a room full of

people with pencils, and paper, and calculators, and slide

rules, they could just have half a room with a mainframe

in it. And then they could have a few people write some

applications in COBOL to do all of the math, and logic,

and ledgering that their entire finance team could do. So



the team of people that you needed to do your finances

became a lot less, just because a lot more of the input

could be digital as opposed to all hand jam in manually.

04:17 - Saron Yitbarek

If you were one of those new COBOL programmers, it

would've felt like you have a job for life. Because the

infrastructure that your work was based on, all those

mainframes, they weren't going anywhere.

04:30 - Chris Short

Moore's Law wasn't around back then, so you could go an

entire decade working on the same mainframe,

potentially, right? Like you didn't have to worry about

the next operating system, or the next type of container

orchestrator, or the next thing that comes along and AI,

or whatever. You could probably spend your whole

career working on COBOL. And you knew you were going

to be pretty safe.



04:55 - Saron Yitbarek

But, Moore's Law did arrive eventually. New

infrastructures showed up, too. And these days,

programmers are less likely to learn a half-century old

language. But here's the thing, those old mainframes

aren't actually gone. And that means our need for

COBOL developers hasn't vanished either.

05:17 - Chris Short

It's getting a lot harder to find COBOL developers. What

ends up happening is these mainframes have been here

for 50 years, potentially. And these COBOL developers

that still can write good COBOL will get paid exorbitant

amount of monies to help with projects, and

reorganization of data within mainframes. And that

skillset is definitely dying off and becoming a highly

lucrative career field if you ... you can definitely make a

lot of money writing COBOL nowadays.



05:49 - Saron Yitbarek

Especially in the manufacturing and finance industries.

You can't outrun all that infrastructure that was laid

down decades ago. Legacy code permeates work all

around the world. It'd be a huge mistake to ignore that

old infrastructure and the languages tied to it.

06:08 - Chris Short

With 200 billion lines of code laying around, it's going to

be really hard to refactor all that. No, I don't think we'll

ever see it disappear in our lifetimes, for sure.

06:21 - Saron Yitbarek

Chris Short is a principal product marketing manager at

Red Hat.

06:28 - Saron Yitbarek



I want to drive Chris's point home for a sec. Consider

this. COBOL is baked into 95% of all ATM transactions.

That's how tied we are to this language. And yet, the

average COBOL programmer isn't much younger than

the language itself. They are 45, maybe 55 years old.

The newbies aren't interested. Which is why I want to

introduce you to someone.

06:56 - Ritika Trikha

Hi, my name is Ritika Trikha.

06:59 - Saron Yitbarek

Ritika's a technology writer, formerly with HackerRank.

And she's fascinated by this question of COBOL, and the

assumption people make that it's a kind of pointless

leftover from the mainframe days.

07:12 - Ritika Trikha



Developers today are really not thinking about COBOL,

it's out of sight, out of mind.

07:17 - Saron Yitbarek

But that could be a recipe for disaster.

07:21 - Ritika Trikha

There's a huge volume of COBOL lines of code that are

still powering businesses today. At least 1.5 billion new

lines of code in COBOL every single year. And I think

when you look at the specific industries, it's really

interesting. Like there's 50 million lines of code at the

IRS. There's 60 million lines of code at the Social

Security Administration. And so these businesses and

entities are handling some of the most sensitive,

important information today, and if we don't continue to

power and maintain these mainframes, it could be really

destructive.



08:04 - Saron Yitbarek

So if we can't escape our old infrastructure, and we can't

wave a magic wand to rebuild the whole mainframe

universe, what do we do? How do coders, who sometimes

only think about the future, start coming to terms with

the past? We need to start by facing the problem head

on.

08:25 - Ritika Trikha

You know, younger generations are going to have to pick

up these skills. Or, there has to be some sort of

modernization of these mainframes. Either way, this

problem isn't going to go away. That's why COBOL is

relevant.

08:35 - Saron Yitbarek

It's not going to be easy. Ritika figures we've ignored the



problem for too long already.

08:42 - Ritika Trikha

It's incredibly expensive, hard, and the risk is incredibly

high to replace billions of lines of COBOL. It's mission-

critical code like Social Security and financial

information. And COBOL was specifically designed for

these types of large volumes of transactions. So it was

designed for business transactions by Grace Hopper in

the 60s. And “if it's not broken, why try to fix it” has been

the mentality since the 60s, and now we're at a point

where we just have decades of very valuable, high

volumes of data running on COBOL.

09:22 - Saron Yitbarek

In a way, Ritika's calling for a cultural shift. A change in

attitude about what's in and what's out. As the world of

development starts to actually gain a deeper and deeper

past, we have to become more in touch with our own



history. You can't escape the aging infrastructure. And

that means you can't ignore the history of languages

either.

09:47 - Ritika Trikha

Something has to be done. When I was at HackerRank, I

saw firsthand how many banks and financial institutions

are hurting, and desperate almost, for COBOL

developers. It's not a problem that's going to go away,

and I think either there has to be some sort of

modernization of the systems, or we need to keep

training folks and incentivizing it. I personally think

there's going to be a day where COBOL is actually in

again. Really, what's going to happen when all of the

developers with COBOL knowledge retire, and no new

younger generations of developers are learning COBOL?

Something has to give, right? So there needs to be more

of a systematic and institutionalized change when it

comes to shifting away from COBOL and into the new

cloud-based infrastructures.



10:37 - Saron Yitbarek

Ritika Trikha is a technology writer based in San

Francisco.

10:49 - Saron Yitbarek

So what about those cloud-based infrastructures Ritika

mentioned? Are the infrastructures we're building today

going to chain future generations to particular

languages, the way we're still tied to COBOL? Amazon

Web Services (AWS) may be the biggest single piece of

cloud infrastructure, launched in 2006. Google Cloud

Platform arrived in 2008, and Microsoft Azure started in

2010. The Go language, with its focus on concurrency,

was made to thrive inside all that new cloud

infrastructure. It's a language of its time.

11:26 - Carmen Andoh



Hi, my name is Carmen Andoh, and I am a program

manager for the Go team at Google.

11:34 - Saron Yitbarek

Carmen has an insider's understanding of how Go is tied

to today's infrastructure. It starts with the creators of Go

having some strong ties to the history of languages.

11:47 - Carmen Andoh

Robert Pike, Robert Griesemer, and Ken Thompson.

Those names have kind of come through ever since the

1960s. So Ken Thompson invented the programming

language B, and then he would go on to invent the UNIX

operating system on a summer off. And Rob Pike

invented UTF-8, which is a string in coding. He also

invented ASCII. He helped co-author the UNIX

programming environment. So these two had been

coworkers for a very, very long time, and they had been

looking at and inventing operating systems in previous



programming languages, including C, which Ken

Thompson would eventually help write with Dennis

Ritchie.

12:28 - Saron Yitbarek

Once Pike, Griesemer, and Thompson were all working at

Google, they discovered a serious problem. Getting

concurrency at scale just wasn't happening. People were

waiting hours for a bill to compile. They were working in

C++, and had to write all these callbacks and event

dispatchers. It was 2009, and our infrastructure was

changing again. Languages like C++ were becoming less

and less in tune with that new reality.

12:59 - Carmen Andoh

The problems were being introduced by things like

multicore processors, and network systems, and massive

computation clusters, and the web programming model.

And then, also, just the growth of the industry and the



number of programmers which were going into the

thousands and the tens-of-thousands by 2010. And so all

of the programming languages up until that point were

being worked around, rather than addressing things

head on.

13:24 - Saron Yitbarek

Eventually, you reach a breaking point and something's

got to give.

13:30 - Carmen Andoh

Hey, we hated C++ and I said, "Well, let's see if we could

invent something new."

13:37 - Saron Yitbarek

That new language would need to be exquisitely adapted

to our latest infrastructure.



13:43 - Carmen Andoh

What happened with the cloud, which was starting to

come of age in 2005, was that you now no longer had to

handle your own computes, you sort of were renting it

elsewhere, and you get a distributed system. But what

happens in a distributed system, and in a cloud, is that

you have problems of concurrent messaging between

distributed systems. You need to make sure that you

have no problems with asynchronicity. Go is a

programming language that is asynchronous by default.

Basically this means that every operation you perform,

like sending all these different messages to another in

the system, it's done without waiting for the other

system to respond back to you. So it can handle multiple

messages at any given time.

14:28 - Carmen Andoh

And that said, cloud computing is distributed. And so Go

was developed to address this exact need. Go became,



early on, one of the standard ways of doing this kind of

distributed computing. And that's why I think that it

picked up a lot of the developer mindshare immediately.

Go absolutely is the language of cloud infrastructure,

both in its design, but also in the ecosystem of all the

cloud infrastructure tooling, and building blocks that

have sprung up in the last decade.

15:06 - Saron Yitbarek

Soon, major applications like Kubernetes were being

written in Go. Google also created Go Cloud, an open

source library and set of tools that made Go even more

attractive. It became clear, this was the language of a

brand new ecosystem. It was the language of the cloud.

And it definitely didn't hurt that the creators had

reputations for developing languages that lasted.

15:33 - Carmen Andoh

I think that the rest of the industry said, "Hey, I don't



think that this is going to be going away anytime soon,"

and the inventors of the language also happen to invent

languages that are now in their 50th year, or 60th year.

15:47 - Saron Yitbarek

Carmen Andoh is a program manager for the Go team at

Google.

15:54 - Saron Yitbarek

So we have a new language, Go, designed to deliver the

concurrency that cloud infrastructure makes necessary.

Sounds great. And Go’s designers tend to create

languages that last for a good half century. Also great.

But my question is, what will that really mean 50 years

from now when Go is more like COBOL? What will it

mean when the world is teeming with legacy Go code

that only older developers understand? Are we going to

be prepared for a time when today's cloud infrastructure



is aging? Are we learning lessons from COBOL and the

world of mainframe that could help us design a better

future for Go and the cloud?

16:40 - Saron Yitbarek

Luckily, I found exactly the right person to ask all these

questions. And that's next.

16:51 - Saron Yitbarek

How do we future-proof our languages? We know they're

tied to the infrastructure of their day. And we know that

new infrastructures are bound to replace the old ones as

decades roll by. So what are we doing today to keep

things running smoothly tomorrow?

17:10 - Kelsey Hightower

I'm Kelsey Hightower, I'm at Google, I'm a developer



advocate and I work bringing open technologies and

turning them to products on Google Cloud.

17:19 - Saron Yitbarek

Kelsey spends a lot of time thinking about the future of

programming. I was curious whether one day we're going

to end up with another aging group of programmers with

these wizard-like skills around Go, the same way we have

a shortage of COBOL wizards today. Are we even

planning for that long range future? So Kelsey and I sat

down to hash it out.

17:42 - Kelsey Hightower

... and so forth. But if you think about some of the new

challenges today, things like dealing with the internet,

the network, you've got multiple users, hundreds of

thousands of concurrent users, different collections of

machines and architecture types. So given those new

use cases, typically you want to have a new language.



For example, JavaScript is for the web, you don't want to

retrofit COBOL so that we can start doing web

programming with it. So we have hundreds of languages

that are out and pretty well established today, and

they're all kind of hyper-focused on their sweet spots.

18:15 - Saron Yitbarek

So in that case then, do we need to actively push people

towards COBOL? If we're developing these new

languages for these new problems and they're highly

specialized, and COBOL's still sticking around, do we

need to encourage folks to pick it up so we can maintain

our legacy code?

18:32 - Kelsey Hightower

Well, I think that's going to be a challenge for the

enterprise, right? So you've invested 10, 20 years in

COBOL, and there is no one actively thinking about



learning some new COBOL. Or you don't come out of

college just like, "I'm going to double-down..."

18:45 - Saron Yitbarek

Right.

18:46 - Kelsey Hightower

"...on this language that's older than my parents." So in

that world, you have to ask yourself, what is the risk of

continuing on with COBOL? Is it still relevant going

forward? I think it is still relevant for certain types of

workloads, but we have to ask ourselves a question, is it

time to progress? Is it time to evolve a little bit? So if you

still have billions of lines of COBOL, you're in the

situation where you're going to have to try to find all the

COBOL talent that's remaining and bring them in house,

but maybe we start to think about what can other

languages learn from COBOL, and incorporate some of

that functionality and libraries into other languages.



19:26 - Saron Yitbarek

Life after COBOL, that would be an enormous

infrastructure project all on its own. To use my New York

subway analogy, it'd be like replacing every underground

tunnel. So, going forward, I wanted to know whether we

could anticipate those issues, and even do our future

selves some favors.

19:48 - Saron Yitbarek

If we compare the cloud today to mainframes, are we

going to end up in the same boat where we have these

legacy code bases that are using kind of old but very

stable languages, and we have to kind of reach this new

point of figuring out if we should move on or stay the

same?

20:05 - Kelsey Hightower



So the thing that makes the cloud a bit different, it's not

from one manufacturer, right? A lot of cloud providers

typically bundle up collections of technology so you have

your choice of programming language, you have your

choice of programming paradigm, whether you want to

event-driven, or it's all web services based on [HTTP]. So

what that means is you get to choose what you want to

program in, and just kind of focus on what gets solved.

So data will come in, data will come out, but you choose

how you want to process that data.

20:36 - Kelsey Hightower

The mainframe typically just kind of had one main

interface, right? Like you write this job, and this is how

you submit the job, here's how you monitor the job, and

here's where it comes out. So that's very limiting of itself.

So if you think about some of the newer mainframes,

they also support some of the newer technology, so even

in the world of mainframe, you start to see the expansion

of programming languages you can use to run your jobs.



20:58 - Kelsey Hightower

So then we start to ask ourselves, okay, given that I have

my new choice, when is it time to move on from this

particular programming paradigm? So I think we don't

get stuck.

21:08 - Saron Yitbarek

Right.

21:08 - Kelsey Hightower

But I think it is going to be nice that there's going to be a

new machine that's going to be distributed, maybe

there's a lower cost of entry, you don't have to buy the

whole mainframe to get started. But we still want that

ease of use of here's my job, you run it for me, tell me

when it's done.



21:24 - Saron Yitbarek

Absolutely. Do you see what's happening, or what's

happened to COBOL, happening to any of today's

languages? Like for example, Go, do you see us

struggling to maintain Go and getting folks who want to

write Go in 30 years?

21:38 - Kelsey Hightower

I think all languages can suffer that fate, right? So if you

think about it, Python's been around for a very long time.

I think it's, what, close to 20 years if not more. So I think

what happens ... and Python's had a resurgence in its

usage, right, it's kind of the foundation of language for

machine learning.

21:53 - Saron Yitbarek

Yep.



21:54 - Kelsey Hightower

For libraries like Tensorflow. So if we use just time alone,

I think that's probably not the right way to look at it. It's

like how relevant is that community? How relevant is

that language willing to adapt? And I think what Python

did really, really well, it ... that community saw the ability

to make other languages easier to use. For example,

Tensorflow's a lot of C++ underneath it, so programming

in such a language is probably not as user friendly as

something like Python. And you could take Python and

use it to generate some of the stuff that people are using

for, example, Tensorflow. So now that machine learning is

hot, people have brung Python into that new space, so

guess what? Python continues to be relevant, and will be

relevant for some time to come. And the same thing's

going to be true for Go. If Go can continue to be relevant,

right, it's like at the foundation of many of our

infrastructure tools, many of the cloud libraries, it too will

remain relevant. So I think it's all about those



communities ensuring that they have a place in the

future, and when the future shows up, making sure that

they have a story there.

22:58 - Saron Yitbarek

Yeah. So how do we future-proof our languages?

Meaning, how do we intentionally design a language to

make it last, and make it relevant 20, 30 years from

now?

23:10 - Kelsey Hightower

The people that use the language, so this is something

that's really unique I think, in the open source space.

Now that we've moved away from commercial languages,

right, languages used to come from Microsoft, or Sun

Microsystems in the case of Java™, and at that point

everyone relied on the vendor to do all the heavy lifting

about what the language would be able to do, any new

improvements in the run time. Now what we see with



things like Go, Node.js, Ruby, all of these are community

backed and focused runtimes and languages. So anyone

can add new libraries, right? There was a new [HTTP]

spec, right, [HTTP/2] came out a few years ago and each

of the respective communities just had contributors add

those particular libraries, and now guess what? All of

those languages are now compatible with the future of

the ... kind of the web for the most part.

24:01 - Kelsey Hightower

So I think it's really now that individuals have more

control if they want their language to be relevant for new

use cases by just contributing that functionality

themselves. So we're not restricted to one or two

companies. If the company goes out of business, then

maybe the runtime dies with it. We don't have that

problem as much anymore.

24:23 - Saron Yitbarek



We've said it on this podcast before. The future is open.

But it's fascinating to consider how in another couple

decades, the past will be open too. They'll be inheriting

infrastructure and languages that are able to morph and

evolve.

24:39 - Kelsey Hightower

Awesome, thanks for having me, and I look forward to

what people do and mainframe is still relevant. So we

don't call it legacy, these are classic technologies.

24:47 - Saron Yitbarek

Ooh, I like that, classic, very nice.

24:51 - Saron Yitbarek

Kelsey Hightower is developer advocate at Google.



24:57 - Saron Yitbarek

I'm imagining a future that's rich with classic

programming languages, along with new languages that

haven't even been born yet. That's a future I'm excited

for.

25:07 - Speaker

Stand clear of the closing doors, please.

25:12 - Saron Yitbarek

You know, in 2017 Governor Andrew Cuomo declared a

state of emergency about the New York City subway. His

government set aside 9 billion dollars to invest in the

aging infrastructure. And that should remind us, sooner

or later, we have to take care of the systems we inherit.

You don't just race onward to whatever comes next. You

bring the past with you.



25:37 - Saron Yitbarek

n the world of development, we tend to have a bias

towards the future. We think our languages are only

useful in the moment, when they're the hot new thing.

But, as informational infrastructure continues to age, the

history of development becomes more and more real.

The past, it turns out, isn't past at all. And it's our job to

remember that.

26:05 - Saron Yitbarek

You can learn more about COBOL, or Go, or any of the

languages we're covering this season, by heading over

to redhat.com/commandlineheroes. There's a bunch of

great bonus material waiting for you.

26:19 - Saron Yitbarek

Next episode is all about Bash. We're exploring the

https://www.redhat.com/en/command-line-heroes


origins of shell scripts, and the key to automation.

26:30 - Saron Yitbarek

Command Line Heroes is an original podcast from Red

Hat. I'm Saron Yitbarek. Until next time, keep on coding.


